
1

IC3 - Network Security

M.Sc. in Information Security
Royal Holloway, University of London

2

IC3 - Network Security

Lecture 5
Secure Protocols – IPSec

3
CINS/F1-01

Objectives of Lecture

• Revisit the “secure channel” concept from
Lecture 4.

• Understand the pros and cons of providing
security at different network layers.

• Investigate how IPSec provides security at the
Internet layer.

• Study major applications of IPSec in Virtual
Private Networking and secure remote access.

4

Contents

8.1 The “secure channel” concept
8.2 Security and network layers
8.3 IPSec
8.4 SSL/TLS
8.5 SSH
8.6 Comparing IPSec, SSL/TLS and SSH.

5

5.1 The “Secure Channel” Concept

• We need to guarantee the confidentiality,
authenticity and integrity of data travelling over
insecure networks

• Applications:
– Branch office connectivity
– Connecting to business partners at remote site
– Remote access for employees
– Remote administration of network devices and

servers
– E-commerce: protecting credit card numbers in

transactions
– E-government: electronic voting, filing tax returns

6

The “Secure Channel” Concept

• We achieve this by building a “secure channel”
between two end points on an insecure network

• Typically this channel will offer:
– Data origin authentication

– Data integrity

– Confidentiality

• But usually not:
– Non-repudiation

– Any security services once data has been received

7

The “Secure Channel” Concept
• Secure channels are usually constructed as follows:

• An authenticated key establishment protocol
– During this one or both parties is authenticated.

– A fresh, shared secret is established.

– Optional features: anti-DoS, identity-protection, perfect forward
secrecy,…

– May use asymmetric (public key) or symmetric cryptography, or a
combination of the two

• Key derivation phase
– MAC & bulk encryption keys are derived from shared secret

• And then further traffic protected using derived keys
– MAC gives data integrity mechanism and data origin authentication
– Encryption gives confidentiality
– Use symmetric cryptography for speed
– Optional optimizations: Session re-use, fast re-keying, …

8

Typical Cryptographic Primitives Used

• Symmetric encryption algorithms
– Almost universally used for performance reasons

• MAC algorithms
– Usually built from hash functions, block ciphers, or possibly a

dedicated design
– Moderate to low computational complexity

• Asymmetric encryption and signature algorithms,
Diffie-Hellman
– For entity authentication and key exchange (as in Lecture 4)

• (Keyed) pseudo-random functions
– For key derivation
– Generally built from hash functions

9

Other Common Techniques Used

• Sequence (and Lamport clocks) numbers are
widely used to prevent replay attacks and
ensure correct data ordering
– These need to be cryptographically protected

• Nonces and timestamps used to provide
freshness in entity authentication exchanges

10

5.2 Security and Network Layers

• Where to place security functionality in the OSI
protocol stack?

• Security can be applied at any of the network
layers except layer 1 (Physical layer).
– Even this is sometimes possible, e.g. spread

spectrum techniques can provide limited (traffic flow)
confidentiality

• What are the pros and cons of applying
security at each of these layers?

11

Security and Network Layers

• Data Link (Network Interface) layer:
Covers all traffic on that link, independent of
protocols above.

e.g. link level encryptor (Lecture 2)
Cannot be compromised even if communicating hosts are

Typically runs at line-speed of link
Protection only for one “hop” (point-to-point)

Doesn’t scale well, but sometimes it’s the only option
Usually implemented using moderate to high cost
special-purpose hardware

12

Security and Network Layers

• Network (Internet) layer:
Covers all traffic carried by IP
Can be end-to-end (or not!)
Transparent to applications
Cost of authentication/key exchange protocols can be
amortized over many applications
Little application control over security that gets applied.

Application has no visibility of Internet layer
Security provided may be overkill or “underkill”

May be unnatural place to apply security
Network layer is stateless and unreliable
Detecting and preventing replays therefore technically impossible,
without maintaining extra state or via a layer violation
Unreliability of IP makes provision of availability a challenge
Order of data in secure channel may be crucial; difficult to
maintain if IP datagrams are dropped, re-ordered,…

13

Security and Network Layers

• Transport layer:
End-to-end protocol
Covers all traffic using the protected transport protocol
Applications can control when it’s used

Application can choose to select secure transport layer or not
Transport layer may be naturally stateful (TCP)

Makes provision of some security services easier
Each application must be modified or proxied to take
advantage of the security provided by secure transport layer
option

Compromised or misconfigured applications and systems may
disable or weaken security mechanism

May be protocol-specific
E.g. SSL/TLS only implemented over TCP, not UDP

14

Security and Network Layers

• Application layer:
Security can be tuned to application requirements

Different applications may have radically different needs
– e.g. VoIP applications vs. sensitive data transfer

Easy access to user credentials (e.g. private keys)
Possible to provide non-repudiation services at
application level

May not make sense at lower layers
But no leveraging effect

Every application must handle its own security
Plenty of room for errors, redundancy, and security holes

15

5.3 IPSec

• IPSec basic features
• IPSec transport and tunnel modes
• AH – authentication and data integrity
• ESP – confidentiality
• IPSec policy and Security Associations
• Combining Security Associations
• Key management in IPSec: IKE

16

IPSec Basic Features

• IPSec provides security at network (Internet) layer
– So all IP datagrams can be covered
– No re-engineering of applications required
– Transparent to users (apart from some key management

aspects)
• Mandatory for next-generation IPv6, optional retro-fit for

current-generation (IPv4)
• Core definition in IETF RFCs 4301-4309 (2005)

– Revisions of original specifications in RFCs 2401–2412 (1998)
– Warning: Not necessarily for the faint-hearted
– Consult “IPSec” by N. Doraswamy and D. Harkins, 2nd ed.

(Prentice Hall, 2003).
– Further RFCs define later enhancements (new cipher suites,

etc.)

17

IPSec Basic Features

• IPSec provides two basic modes of use:
– Transport mode: for IPSec-aware hosts as endpoints
– Tunnel mode: for IPSec-unaware hosts, established by intermediate

gateways or host OS
• IPSec provides authentication and/or confidentiality services for

data
– AH and ESP protocols

• AH and ESP can each be applied multiple times (in tunnel or
transport mode) to a given datagram
– IPSec policies will define how and when this is done

• IPSec provides (overly?) flexible set of key establishment
methods:
– IKE, derived from Oakley and SKEME protocols
– Operating within ISAKMP framework
– IKEv2 (RFC 4306, Dec. 2005) not yet widely deployed
– Copious interoperability headaches owing to vague and fuzzy layered

specifications leaving plenty of room for misinterpretation
18

IPSec Transport Mode

• Protection for upper-layer protocols
• Protection covers IP datagram payload

(and selected header fields)
– Could be TCP packet, UDP, ICMP message,….

• Host-to-host (end-to-end) security:
– IPSec processing performed at endpoints of secure

channel
– So endpoint hosts must be IPSec-aware for

transport mode

19

IPSec Transport Mode

Header Payload

IP datagram

Network

Header Payload

IP datagram

20

IPSec Tunnel Mode

• Protection for entire IP datagram
• Entire datagram plus security fields treated as new

payload of “outer” IP datagram
• So original “inner” IP datagram is encapsulated within

“outer” IP datagram
• IPSec processing is performed at security gateways on

behalf of endpoint hosts
– Gateway could be perimeter firewall or router (e.g. also with

hardware support for IPSec offloading)
– Gateway-to-gateway rather than end-to-end security
– Hosts need not be IPSec-aware

• Intermediate routers have no visibility of inner IP
datagram
– Even orginal source and destination addresses encapsulated

and so “hidden”

21

IPSec Tunnel Mode

Header Payload
Header Payload

Header Payload

Inner IP datagram

Outer
Header

Network

Header Payload

Inner IP datagram

Inner IP datagram
Inner IP datagram

Security

Gateway

Security

Gateway

Outer
Header

22

AH Protocol

• AH = Authentication Header (RFC 4302)
• Provides data origin authentication and data integrity

services
• AH authenticates whole payload and most of header
• Prevents IP address spoofing

– Source IP address is authenticated
• Creates stateful channel

– Use of sequence numbers
• Prevents replay of old datagrams

– AH sequence number is integrity protected
– Recipient tracks sequence numbers of arriving packets
– Reject repeats and packets that are too old

• Uses MAC and symmetric key shared between
endpoints

23

AH Protocol

• AH specifies a header added to IP datagrams
• Fields in header include:

– Payload length
– SPI = Security Parameters Index

• Identifies which algorithms and keys are to be used for
IPSec processing (more later)

– Sequence number
– Authentication data (the MAC value)

• Calculate over immutable IP header fields (so omit TTL)
and (payload or inner IP datagram)

24

AH Protocol – Transport and Tunnel

Payload (eg TCP, UDP, ICMP)

Inner

IP header

AH in transport mode:

AH in tunnel mode:

MAC scope - all immutable fields

Payload (eg TCP, UDP, ICMP)

Original

IP header

Outer

IP header

MAC scope - all immutable fields

AH
Len, SPI, seq#, MAC

AH
Len, SPI, seq#, MAC

25

ESP Protocol

• ESP = Encapsulating Security Payload (RFC 4303)
• Provides one or both of:

– Confidentiality
• Protection for payload in transport mode and inner datagram in

tunnel mode
• Sequence number is not protected by encryption

– Authentication/integrity protection
• Protection for payload in transport mode and inner datagram in

tunnel mode
• But header fields (original header or outer header) are

unprotected

• Gives limited traffic-flow confidentiality in tunnel mode
• Uses symmetric encryption and MACs based on secret

keys shared between endpoints
26

ESP Protocol

• ESP specifies a header and trailing fields to be
added to IP datagrams

• Fields in header include:
– SPI
– Sequence number

• Fields in trailer include:
– Any padding needed for encryption algorithm (may

also help disguise payload length)
– Padding length
– Authentication data (if any) – the MAC value

27

ESP Protocol – Transport and Tunnel

Payload

(e.g. TCP, UDP, ICMP)
ESP hdr
SPI, seq#

Inner

IP header

ESP in transport mode:

ESP in tunnel mode:

MAC scope

Original

IP header

Outer

IP header

ESP

trlr

ESP

auth

Encryption scope

Payload

(e.g. TCP, UDP, ICMP)

ESP

trlr

ESP

auth
ESP hdr
SPI, seq#

MAC scope

Encryption scope

28

AH and ESP Algorithms

• IPSec supports the use of a number of algorithms for
ESP and AH
– Standard was designed to be flexible and extensible

• ESP:
– DES, three-key triple DES, AES, Blowfish, etc.
– Each algorithm needs its own RFC
– E.g. use of DES for ESP defined in RFC 2405 (since

deprecated in RFC 4308); while RFC 2410 specifies the “null
encryption algorithm”!

– New RFCs summarize some mandatory cipher suites (RFC
4308)

• AH:
– HMAC-MD5-96, HMAC-SHA-1-96,…

29

Integrity Protection in AH and ESP

• Separate existence of authentication/integrity
protection in both AH and in ESP for
performance, backwards-compatibility, and
political (!) reasons
– Original version of ESP (RFC 1827) had no integrity

protection mechanism
– So two IPSec processing steps needed to provide

both confidentiality and integrity protection services
– IETF decided to incorporate integrity protection

directly into second version of ESP RFC (RFC 2406)
for efficiency reasons

• Integrity protection has different scope in ESP
and AH

30

Sequence Numbers in IPSec

• Both ESP and AH use sequence numbers to
provide an anti-replay service

• Sequence numbers are 32 bits long
– Initialised to zero
– Increment on datagram-by-datagram basis
– Overflow results in auditable event and re-keying

• Protected by MACs in AH and ESP
– But no protection afforded to sequence numbers

when ESP (confidentiality only) is used
• Recipient uses “sliding window” to track

datagram arrivals

31

Sequence Numbers in IPSec

• Sliding windows:
– Window indicates which sequence numbers have already been

seen
– Each newly arrived sequence number is compared to the

entries in the current window
– If new sequence number to left of window or already received,

reject the packet (too old or replay)
– If new sequence number to right of current window, move the

window to the right to accommodate it and accept the packet
– Otherwise, mark the corresponding entry in the window and

accept the packet

• Recommended window width is 64.
– Datagrams can be dropped if delayed too long (by network

latency or deliberately)

32

IPSec Security Policy

• How does IPSec determine what security processing is
to be applied to IP datagrams?

• IPSec-aware host has a Security Policy Database
(SPD)
– A required part of IPSec implementations
– SPD is populated by network adminstrators

• The SPD is consulted for each out-bound and in-bound
datagram

• Fields in IP datagram compared to fields in SPD entries
to find matches
– Match can be based on source and dest addresses (and

ranges of addresses), transport layer protocol, transport layer
port numbers,…

• Each match identifies a Security Association (SA) or
group of SAs (or the need for a new SA)

33

IPSec Security Associations (SAs)

• Each SA defines a set of algorithms, mode
(tunnel or transport) and keys to be used to
process a datagram

• An SA is a one-way (simplex) relationship
between a sender and receiver
– Specifying some cryptographic processing to be

applied to this datagram from this sender to this
receiver

• SAs are held in the SA database (SADB)
– Collection of active SAs
– A required part of IPSec implementations

34

IPSec Security Associations (SAs)

• SAs are established manually or as needed by IKE
(see later)

• Each SA is identified by a unique SPI (32 bit value
carried in AH and ESP headers)
– Allows recipient to determine how to process received

datagrams

• Each SA contains:
– Sequence number counter/sliding window
– AH/ESP info: algorithms, IVs, keys, key lifetimes
– SA lifetime (soft and hard, bytes processed and/or time)
– Protocol mode: tunnel or transport
– Tunnel destination for tunnel mode
– Path Maximum Transfer Unit (PMTU)

35

IPSec Out-bound Processing

Look up SPD
to find policy
for datagram.

Create new
SA if

needed.

Apply keys
in SA for

encryption/
MACing.

Pass processed
datagram

down to Link
Layer.

Drop
datagram.

Process

Pass

Drop, pass
through or

process datagram?

Drop

36

IPSec In-bound Processing

Look up SPD
to find policy
for datagram
or extract SPI
from header.

SA exists?

Apply keys in
SA to decrypt/
check MAC.

Pass processed
datagram up to
higher layer.

Yes
Does the IPSec

processing that was
applied match that
specified in SPD?

Drop packet

No

Drop, pass
through or

process datagram?

Drop
datagram.

Drop Pass

Drop.

No

Drop.

Yes
Process

37

SPDs and SAs in Action
Host A

1.1.1.1

Host B

2.2.2.2

A’s SPD:
SADB
pointer

Transport ESP
with 3DES

80TCP2.2.2.21.1.1.1

PolicyPortProtocolToFrom

A’s Outbound SADB:

3DES key10ESP2.2.2.21.1.1.1
SA recordSPIProtocolToFrom

38

SPDs and SAs in Action

• IPSec processing is evidently complex and may have
impact on network throughput
– Realistic IPSec policy can lead to nested levels of IPSec

processing
– Outbound processing requires matching of traffic selectors to

entries in SPD, then SADB look-ups
– In-bound processing can use SPIs to index directly to SADB

• Careful design and implementation of SPD and SADB
is then necessary
– Need efficient look-up mechanisms for matching traffic to SPD
– Use cache of pointers to SADB in SPD
– Use cache of pointers to SPD entries in socket data structure

for connection-oriented communications (TCP)

39

Combining SAs

• Often, we want security services provided by both ESP
and AH, and may want to provide them at different
points in network
– ESP only allows MAC after encryption; we may desire reverse
– May desire AH in transport host-to-host tunnelled inside ESP

gateway-to-gateway for Virtual Private Network (VPN)
– Using encryption without some form of authentication/integrity

protection in IPSec is extremely dangerous
• SAs can be combined using either:

– Transport adjacency: more than one SA applied to same IP
datagram without tunnelling

• Essentially AH + ESP
– Iterated tunnelling: multiple levels of nesting of IPSec tunnels;

each level with its own SA
• Each tunnel can begin/end at different IPSec site along route

40

Required SA Combinations
1. End-to-end application of IPSec between IPSec-aware

hosts:
– One or more SAs, one of the following combinations:

• AH in transport
• ESP in transport
• AH followed by ESP, both transport
• Any of the above, tunnelled inside AH or ESP

InternetLocal
network

Local
network

One or more SAs

41

Required SA Combinations

2. Gateway-to-gateway only:
– No IPSec at hosts
– Simple Virtual Private Network (VPN)
– Single tunnel SA supporting any of AH, ESP (confidentiality

only) or ESP (confidentiality + authenticity)

InternetLocal
network

Local
network

Tunnel SA

42

Required SA Combinations

3. A combination of 1 and 2 above:
– Gateway-to-gateway tunnel as in 2 carrying host-to-host traffic

as in 1
– Gives additional, flexible security on local networks (between

gateways and hosts)
– e.g. ESP in tunnel mode carrying AH in transport mode

InternetLocal
network

Local
network

Tunnel SA One or more SAs

43

Required SA Combinations

4. Remote host support:
– Single gateway (typically firewall)
– Remote host uses Internet to reach firewall, then gain access

to server behind firewall
– Traffic protected in inner tunnel to server as in case 1 above
– Outer tunnel protects inner traffic over Internet

Internet Local
network

Tunnel SA One or more SAs

Security

Gateway

44

IPSec Key Management

• IPSec is a heavy consumer of symmetric keys:
– One key for each SA
– Potentially, different SAs for every combination from:

{ESP,AH} x {tunnel,transport} x {sender, receiver} x {protocol} x {port}

• Where do these SAs and keys come from?
• Two sources:

– Manual keying
• Fine for small number of nodes and testing purposes
• Hopeless for reasonably sized networks of IPSec-aware hosts

– IKE: Internet Key Exchange, RFC 2409 (v1), RFC 4306 (v2).
• RFC documentation can be a bit hard to follow
• IKE is an adaptation of other protocols (Oakley and SKEME) within

the framework of another specification (ISAKMP)
• Protocols have many options and parameters

– IKEv2 can be assumed to have similar lengthy teething problems
• Intended to address problems and complexities of IKEv1, but…

45

• Entity authentication of participating parties
• Establishment of a fresh, shared secret

– Shared secret used to derive further keys
– For confidentiality and integrity protection of IKE management

channel
– For SAs for general use

• Limited resistance to Denial-of-Service attacks
– Using cookie mechanism

• Secure negotiation of all parameters and algorithms
– Authentication method, key exchange method, Diffie-Hellman

group, algorithms for encryption and MAC, hash algorithms
• Options for Perfect Forward Secrecy, Deniable

Authentication and Identity Protection

IKE Security Goals (IKE v1)

46

IKE operates in two phases:
• Phase 1: Negotiate a special SA, the IKE SA, along

with keying information
– IKE SA specifies encryption and MAC algorithms for use in

constructing a secure channel used in Phase 2
– IKE SA also specifies authentication method and

Diffie-Hellman parameters to be used in Phase 1
• Authenticated Diffie-Hellman key exchange used to establish

keying information for use in Phase 2 secure channel
– Collection of algorithms and data called a protection suite
– IKE SA is bi-directional and contains somewhat different

information to “normal” IPSec SAs

IKE Phases

47

• Phase 2: SAs for general IPSec use are
negotiated
– Phase 2 uses a secure channel to perform further

SA negotiation
– Algorithms for this secure channel are defined by

the IKE SA agreed in Phase 1
– Keys are derived from the Diffie-Hellman exchange

in Phase 1
– Phase 2 can also be used for secure transport of

error and management traffic
– Many Phase 2 runs allowed for each run of Phase 1;

multiple SAs can be negotiated per run
– The result is fast and cheap negotiation of IPSec

SAs in Phase 2

IKE Phases

48

IKE Phase 1

• Phase 1 is the heavyweight exchange to establish a
secure channel for Phase 2; two variants:
– “Main mode”: slow (6 messages), more cautious, hides details

of credentials used, provides (limited) anti-DoS service
– “Aggressive mode”: less negotiation, only 3 messages, more

information disclosed
• Each of main and aggressive mode allows 4 different

authentication mechanisms:
– Signature, public-key encryption, revised public-key encryption,

pre-shared key (symmetric)
– Nonces for freshness
– Certificates for authenticity of public keys

• Chosen mechanism used to authenticate a Diffie-
Hellman key exchange
– In one of 5 different fixed groups or using “new group mode”

49

IKE Phase 1 Main Mode Example

We illustrate Phase 1 main mode using
“authentication with signatures” (simplified!)
(i=Initiator, r=Responder, […]=optional field)

1. I R: HDRi, SAi

2. R I: HDRr, SAr

3. I R: HDRi, KEi, Ni [,Cert_Req]
4. R I: HDRr, KEr, Nr [,Cert_Req]
5. I R: HDRi, {IDi, [Certi,] Sigi}SKEYIDe

6. R I: HDRr, {IDr, [Certr,] Sigr}SKEYIDe

50

Explanation

Messages 1 and 2:
• I and R exchange cookies CKY-I, CKY-R (contained in

HDRi, HDRr fields)
– Cookies provide limited anti-DoS measure (details later)

• I and R also exchange lists of preferred/accepted IKE
SAs (in SAi, SAr fields), these are also known as
protection suites
– These specify algorithms for use in Phase 2 and authentication

methods and Diffie-Hellman parameters for use in remainder of
Phase 1

Messages 3 and 4:
• I and R exchange Diffie-Hellman values (KEi= gx,

KEr=gy) and nonces (Ni, Nr), request certificates
• I and R also re-exchange cookies to complete anti-DoS

feature

51

Explanation

• Messages 5 and 6:
– I and R exchange identities, certificates, and

signatures
– These exchanges are encrypted by a key SKEYIDe

derived from Diffie-Hellman values and nonces
– Signatures are on hash of string formed by

concatenating Diffie-Hellman values, nonces,
SAi, SAr,…)

– Signatures on fresh values (nonces) provide mutual
entity authentication

• Compare this protocol with Station-to-Station
protocol from Lecture 4

52

Features of Main Mode

• Identity protection
– IDi, IDr and Certs only ever transported in encrypted form.

• Anti-Denial of Service via CKY-I and CKY-R
– I and R do not perform expensive computations until an

exchange of cookies has taken place
– Prevents rudimentary DoS based on address spoofing
– Attacker spoofing I’s IP address will not receive cookie from R

in message 2 and cannot guess correct response for CKY-R in
message 3

– Likewise, attacker spoofing R’s address will not possess
correct CKY-I for inclusion in message 2

• Secure negotiation of protection suites
– SAi and SAr included in signatures
– Prevents attacker spoofing messages to force I and R to agree

on weakest common algorithms

53

Aggressive Mode

• Aggressive mode sacrifices identity protection,
flexibility in protection suite negotiation and
anti-DoS feature to gain faster execution
– 3 messages instead of 6
– I provides list of protection suites, identity,

Diffie-Hellman value and nonce in first message
– R selects one suite, and responds with choice

together with his identity, Diffie-Hellman value and
nonce. Also includes authentication payload
(e.g. a signature)

– I responds with his authentication payload in third
message

54

Deriving Keys From Phase 1

• Phase 1 agrees Diffie-Hellman key gxy

• Further keys derived from this keying material:
• SKEYID = prf(Ni | Nr, gxy) (for signature-based authentication)

• SKEYIDd = prf(SKEYID, gxy | CKY-I | CKY-R | “0”)

• SKEYIDa = prf(SKEYID, SKEYIDd | gxy | CKY-I | CKY-R | “1”)

• SKEYIDe = prf(SKEYID, SKEYIDd | gxy | CKY-I | CKY-R | “2”)

• SKEYIDa: key for MAC in Phase 2

• SKEYIDe: key for encryption in Phase 2

• SKEYIDd: also used to derive further keys for
IPSec SAs exchanged in Phase 2

55

IKE Phase 2

• Only one form for Phase 2, also called
Quick Mode

• Either I or R can initiate Phase 2 protocol run
• Uses algorithms and keys agreed in Phase 1 to

protect IPSec SA exchanges in Phase 2
– Can have many Phase 2 runs over this

secure channel
– Can propose/accept multiple SAs in one Phase 2

protocol run
– Spreads cost of heavy-weight Phase 1
– Uses only symmetric techniques (MAC and

encryption algorithms)

56

IKE Phase 2

• Uses fresh nonces to provide entity
authentication

• Uses SKEYIDd from Phase 1 to define keys for
exchanged IPSec SAs
– Option to include new Diffie-Hellman exchange in

Phase 2 runs for higher security
– This provides property of perfect forward secrecy

(PFS), but slower to execute
– PFS: even if Phase 1 secrets later compromised,

keys in IPSec SAs exchanged in Phase 2 will still be
secure

57

IKE Phase 2

Basic structure of IKE Phase 2:
• I sends list of proposed SAs, nonce and

optional fields: DH value; identity information
• R responds with accepted SAs, nonce and

optional fields: DH value; identity information
– Both flows integrity protected and encrypted
– Identity information provides traffic selectors for

populating SADBs of I and R
• I closes with message providing entity

authentication to R
– Essentially a MAC on R’s nonce

58

Further IKE Exchanges

• IKE information exchange
– For transmission of status and error messages
– Example: notify a peer that an SA has been deleted
– Carried in single, unacknowledged message

• IKE new group exchange
– Allows peers to negotiates private parameter sets

for Diffie-Hellman key exchanges
– In addition to the 5 pre-defined groups
– Protected by the IKE SA
– Two message protocol: Propose and accept

59

Changes and Improvements in IKEv2

• Reduced complexity and some clarifications
• Support for NAT traversal (using UDP

encapsulation with ESP SPI value of zero)
• Improvements in the DoS cookie mechanism

– Limited source authentication to reduce likelihood of
DoS attacks from spoofed source addresses

• SA lifetimes were negotiated in IKEv1, in IKEv2
the lifetimes can be chosen more or less
arbitrarily by each party to the exchange

• IKEv1 and v2 are not interoperable, but are
sufficiently different in header fields that they
can run over the same port

60

Final Notes on IPSec

• IKE is carried over UDP (port 500); hence unreliable
and blocked by some firewalls

• IPSec and firewalls have problems working together
– Authentication of source IP addresses in AH is the issue
– Some firewalls change these addresses on out-bound

datagrams (masquerading or NAT)

• IPSec support for ICMP is somewhat complicated
• Managing IPSec policy and deployments is tricky

– Getting it wrong can mean losing connectivity, e.g. by making
exchanges of routing updates unreadable

– Getting it wrong can mean loss of security
– Many, many IPSec options, rather poor documentation

61

Final Notes on IPSec

• Microsoft started supporting IPSec with Windows XP,
replacing PPTP; it is also part of most other Unix and
Unixoid operating systems (usually also with IPv6
support)

• IPSec adopted in UMTS standards to provide secure
communications for core network infrastructure

• Many vendor-specific hardware implementations
– Typically integrated with firewall/router to provide general

purpose security gateway
– But IPSec VPN products are being severely challenged in the

marketplace by SSL-based products

62

6.1 SSL/TLS

• SSL/TLS overview and basic features
• SSL Record Protocol
• SSL Handshake Protocol
• Other SSL Protocols
• SSL and TLS differences
• SSL applications

63

SSL/TLS Overview

• SSL = Secure Sockets Layer.
– unreleased v1, flawed but useful v2, good v3.

• TLS = Transport Layer Security.
– TLS1.0 = SSL3.0 with minor tweaks (see later).
– Defined in RFC 2246.
– Open-source implementation at

http://www.openssl.org/.
• SSL/TLS provides security ‘at TCP layer’.

– Uses TCP to provide reliable, end-to-end transport.
– Applications need some modification.
– In fact, usually a thin layer between TCP and HTTP.

64

SSL/TLS Basic Features

• SSL/TLS widely used in Web browsers and
servers to support ‘secure e-commerce’ over
HTTP.
– Built into Microsoft IE, Netscape, Mozilla, Apache,

IIS,…
– Use indicated by presence of browser lock.

• SSL architecture provides two layers:
– SSL Record Protocol

• Provides secure, reliable channel to upper layer.

– Upper layer carrying:
• SSL Handshake Protocol, Change Cipher Spec. Protocol,

Alert Protocol, HTTP, any other application protocols.

65

SSL Protocol Architecture

TCP

SSL Record
Protocol

SSL
Handshake

Protocol

SSL
Alert

Protocol

HTTP,
other apps

SSL
Change
Cipher
Spec

Protocol

66

SSL Record Protocol

• Provides secure, reliable channel to upper layer.
• Carries application data and SSL ‘management’ data.
• Session concept:

– Sessions created by handshake protocol.
– Session state defined by session ID and set of cryptographic

parameters (encryption and hash algorithm, master secret,
certificates) negotiated in handshake protocol.

– Each session can carry multiple sequential connections.
• Connection concept:

– Keys for multiple connections derived from master secret
created during single run of handshake protocol.

– New nonces used with master secret to derive keys for each
new connection.

– These nonces are exchanged in a lightweight version of
handshake protocol.

– Avoids repeated use of expensive handshake protocol

67

SSL Record Protocol

SSL Record Protocol provides:
• Data origin authentication and integrity.

– MAC using algorithm similar to HMAC.
– Based on MD-5 or SHA-1 hash algorithms.
– MAC protects 64 bit sequence number for anti-

replay.
• Confidentiality.

– Bulk encryption using symmetric algorithm.
• IDEA, RC2-40, DES-40 (exportable), DES, 3DES block

ciphers.
• RC4-40 and RC4-128 stream ciphers.

68

SSL Record Protocol

Operation of Record Protocol:
• Data from layer above is received and partitioned into

fragments (max size 214 bytes).
• Optional data compression.

– Default option is no compression.
• Calculate MAC and append to data.
• Pad to multiple of encryption algorithm block length (if

needed), then encrypt.
• Prepend header.

– Containing content type, version, length of fragment.
• Submit to TCP.
• Reverse these steps at recipient.

69

SSL Handshake Protocol

• Like IPSec, SSL consumes symmetric keys:
– MAC and encryption algorithms at Record Layer.
– Initialization vectors (IVs) for encryption algorithms.
– Different keys and IVs in each direction.

• These keys are established by the SSL
Handshake Protocol and subsequent key
derivation.

• As with IKE in IPSec, the SSL Handshake
Protocol is a complex protocol with many
options.

70

SSL Handshake Protocol
Security Goals

• Entity authentication of participating parties.
– Participants are called ‘client’ and ‘server’.

• Reflects typical usage in e-commerce.
– Server nearly always authenticated, client more

rarely.
– Appropriate for most e-commerce applications.

• Establishment of a fresh, shared secret.
– Shared secret used to derive further keys.
– For confidentiality and authentication in SSL Record

Protocol.
• Secure ciphersuite negotiation.

– Encryption and hash algorithms
– Authentication and key establishment methods.

71

SSL Handshake Protocol – Key
Exchange

• SSL supports several key establishment mechanisms.
• Method used is negotiated during the Handshake

Protocol itself.
• Most common is RSA encryption (as in Lecture 4).

– Client chooses pre_master_secret, encrypts using public
RSA key of server, sends to server.

• Can also create pre_master_secret from:
– Fixed Diffie-Hellman

• Server (and possibly Client) certificate contains DH parameters.
– Ephemeral Diffie-Hellman

• Server and Client choose fresh Diffie-Hellman components.
– Anonymous Diffie-Hellman

• Each side sends Diffie-Hellman values, but no authentication.
• Vulnerable to man-in-middle attacks.

72

SSL Handshake Protocol – Entity
Authentication

• SSL supports several different entity authentication
mechanisms for clients and servers.

• Method used is again negotiated during the Handshake
Protocol itself.

• Most common server authentication method is based
on RSA.
– Ability of server to decrypt pre_master_secret using its

private key and then generate correct MAC in finished
message using key derived from pre_master_secret
authenticates server to client (c.f. Lecture 4).

• Less common: DSS or RSA signatures on nonces (and
other fields, e.g. Diffie-Hellman values).

73

SSL Key Derivation

Keys used for MAC and encryption in Record Layer
derived from pre_master_secret:

• Derive master_secret from pre_master_secret
using combination of MD5 and SHA-1 hash functions.

• Derive key_block from master_secret and
client/server nonces, by repeated use of MD5 and
SHA-1 in combination.

• Split up key_block into MAC keys, encryption keys
and IVs for use in Record Protocol as needed.

74

• An illustrative protocol run follows.
• We choose the most common use of SSL.

– No client authentication.
– Client sends pre_master_secret encrypted

under Server’s RSA public key
– Server public key obtained from server certificate.
– Server authenticated by ability to decrypt to obtain
pre_master_secret, and construct correct
finished message.

• Other protocol runs are similar.

SSL Handshake Protocol Run

75

SSL Handshake Protocol Run

M1: C S: ClientHello

• Client initiates connection.
• Sends client version number.

– 3.1 for TLS.
• Sends ClientNonce and SessionID.

– Nonce is 28 random bytes plus 4 bytes of time.
– SessionID used to signal request to set up new connection

for existing session or to signal completely new session.
• Offers list of ciphersuites.

– Key exchange and authentication options, encryption
algorithms, hash functions.

– E.g. TLS_RSA_WITH_3DES_EDE_CBC_SHA.

76

SSL Handshake Protocol Run

M2: S C: ServerHello,
ServerCertChain, ServerHelloDone

• Sends server version number.
• Sends ServerNonce and SessionID.

– SessionID will match client’s if new connection for
existing session; otherwise selected by server.

• Selects single ciphersuite from list offered by
client.
– E.g. TLS_RSA_WITH_3DES_EDE_CBC_SHA.

77

SSL Handshake Protocol Run

M2: S C: ServerHello,
ServerCertChain, ServerHelloDone

• Sends ServerCertChain message.
– Allows client to validate server’s public key back to

acceptable root of trust.
• (optional) CertRequest message.

– Omitted in this protocol run – no client
authentication.

• Finally, ServerHelloDone.

78

SSL Handshake Protocol Run

M3: C S: ClientKeyExchange,
ChangeCipherSpec, ClientFinished

• ClientKeyExchange contains encryption of
pre_master_secret under server’s RSA public key.

• (optional) ClientCertificate,
ClientCertificateVerify messages.
– Only sent when client is authenticated.
– ClientCertificateVerify message is typically a signature

on nonces (and other values) exchanged in the protocol run.
– Authentication via signature and nonce (c.f. Lecture 4).

79

SSL Handshake Protocol Run

M3: C S: ClientKeyExchange,
ChangeCipherSpec, ClientFinished

• ChangeCipherSpec indicates that client is
now switching to use of ciphersuite agreed for
this session.
– Sent using SSL Change Cipher Spec. Protocol.
– Technically, an upper layer protocol.

• Finally, ClientFinished message.
– A MAC on all messages sent so far (by both sides).
– MAC computed using master_secret.
– Provides protection of ciphersuite negotiation.

80

SSL Handshake Protocol Run

M4: S C: ChangeCipherSpec,
ServerFinished

• ChangeCipherSpec indicates that server is now
switching to ciphersuite agreed for this session.
– Sent using SSL Change Cipher Spec. Protocol.

• Finally, ServerFinished message.
– A MAC on all messages sent so far (both sides).
– MAC computed using master_secret.
– Server can only compute MAC if it can decrypt
ClientKeyExchange in M3 to get pre_master_secret.

– Provides server authentication and protection of ciphersuite
negotiation.

81

SSL Handshake Protocol Run

Summary:

M1: C S: ClientHello
M2: S C: ServerHello,
ServerCertChain,ServerHelloDone

M3: C S: ClientKeyExchange,
ChangeCipherSpec, ClientFinished

M4: S C: ChangeCipherSpec,
ServerFinished

82

SSL Handshake Protocol Run
1. Is the client authenticated to the server in this protocol

run?
2. Can an adversary learn the value of

pre_master_secret?
3. Is the server authenticated to the client?

1. No!
2. No! Client has validated server’s public key; only

holder of private key can decrypt
ClientKeyExchange to learn
pre_master_secret.

3. Yes! ServerFinished includes MAC on nonces
computed using key derived from
pre_master_secret.

83

Other SSL Handshake Protocol Runs

• Many optional/situation-dependent protocol
messages:
– M2 (S C) can include:

•ServerKeyExchange (e.g. for DH key
exchange), including server’s signature.

•CertRequest (for client authentication).
– M3 (C S) can include:

•ClientCert (for client authentication),
•ClientCertVerify (for client authentication).

• For details, see Stallings Figure 7.6 and pp.
212-219 (SSL) or RFC 2246 (TLS).

84

SSL Handshake Protocol –
Additional Features

• SSL Handshake Protocol supports session
resumption and ciphersuite re-negotiation.
– Allows authentication and shared secrets to be

reused across multiple connections in a single
session.

• Eg, fetching next web-page from same website
without re-doing full, expensive Handshake
Protocol

– Also allows re-keying and change of ciphersuite
during a session.

85

SSL Handshake Protocol –
Additional Features

Mechanism:
• Client and server run lightweight version of Handshake

Protocol.
• ClientHello quotes existing SessionID, new nonce

and list of ciphersuites.
• ServerHello repeats SessionID, sends new nonce

and selected ciphersuite.
• Parties then exchange ChangeCipherSpec and
Finished messages.

• New key_block is derived by both sides.
– New keys and IVs dependent on new nonces and old
master_secret.

• Exchange protected by existing Record Protocol.

86

Other SSL Protocols

• Alert protocol.
– Management of SSL session, error messages.
– Fatal errors and warnings.

• Change cipher spec protocol.
– Not part of SSL Handshake Protocol.
– Used to indicate that entity is changing to recently

agreed ciphersuite.
• Both protocols run over Record Protocol (so

peers of Handshake Protocol).

87

SSL and TLS

TLS1.0 = SSL3.0 with minor differences, including:
• TLS signalled by version number 3.1.
• Use of HMAC for MAC algorithm.
• Different method for deriving keying material

(master_secret and key_block).
– Pseudo-random function based on HMAC with MD5 and

SHA-1 operating in combination.

• Additional alert codes.
• More client certificate types.
• Variable length padding.

– Can be used to hide lengths of short messages and so
frustrate traffic analysis.

88

SSL/TLS Applications

Secure e-commerce using SSL/TLS.
• Client authentication not needed until client

decides to buy something.
• SSL then provides a secure channel for

transport of, for example, credit card details,
security code, billing address.

• Hence user authentication at application level
protected by SSL at transport level.

• Very successful (amazon.com, on-line
supermarkets, airlines,…)

89

SSL/TLS Applications

Secure e-commerce: some issues.
• No guarantees about what happens to client data (including credit

card details) after session: may be stored on insecure server.
• Does client understand meaning of certificate expiry and other

security warnings?
• Does client software properly check server certificate chain?
• Can an attacker inject root certificates into the client browser?
• Does the name in certificate match the URL of the e-commerce

site? Does the user check this?
• Is the site the one the client thinks it is?
• Is the client software proposing appropriate ciphersuites?

90

SSL/TLS Applications

Secure electronic banking.
• Client authentication may be enabled using

client certificates.
– Issues of registration, secure storage of private

keys, revocation and re-issue.
• Otherwise, SSL provides secure channel for

sending client credentials.
• Similar issues to e-commerce applications.

91

SSL/TLS Applications

Virtual Private Networking.
• SSL provides convenient method for enabling

secure, remote access to web-facing
applications.

• Popular due to widespread deployment of
required browser software.
– Compare to deployment issues for IPSec.

• Vendors producing web proxying components
for non-web-facing applications, further
extending applicability of SSL VPNs.

• SSL VPNs now a serious competitor to IPSec
VPNs.

92

Some SSL/TLS Security Flaws

• (Historical) flaws in random number generation
for SSL.
– Low quality random number generator leads to

predictable session keys.
– Goldberg and Wagner, Dr. Dobb’s Journal, Jan.

1996.
– http://www.ddj.com/documents/s=965/ddj9601h/

93

Some SSL/TLS Security Flaws

• Flaws in error reporting.
– (differing response times by server in event of padding failure

and MAC failure) + (analysis of padding method for CBC-
mode) = recovery of SSL plaintext.

– Canvel, Hiltgen, Vaudenay and Vuagnoux, Crypto2003.
– http://lasecwww.epfl.ch/php_code/publications/search.php?ref=

CHVV03
• Timing attacks.

– analysis of OpenSSL server response times allows attacker in
same LAN segment to derive server’s private key!

– Boneh and Brumley, 12th Usenix Security Symposium, 2003.
– http://crypto.stanford.edu/~dabo/abstracts/ssl-timing.html

94

6.2 SSH

• SSH overview
• SSH architecture
• SSH security
• Port forwarding with SSH
• SSH applications

95

• SSH = Secure Shell.
– Initially designed to replace insecure rsh, telnet utilities.
– Secure remote administration (mostly of Unix systems).
– Extended to support secure file transfer and other functions.
– Latterly, provide a general secure channel for network

applications.
– SSH-1: flawed ad hoc design, now largely obsolete.
– SSH-2: better security, more flexible architecture.

• SSH provides security at application layer.
– Only covers traffic explicitly protected.
– Applications need modification, but port-forwarding eases some

of this (see later).
– Built on top of TCP, reliable transport layer protocol.

SSH Overview

96

SSH Overview

• SSH Communications Security (SCS).
– www.ssh.com.
– Founded by Tatu Ylonen, designer of SSH-1.
– Their Tectia product suite implements SSH-2.

• Open source implementation of SSH-2 also
available from OpenSSH.

• IETF Secure Shell (SECSH) working group.
– Standards for SSH largely completed, long awaiting

publication as RFCs.
– www.ietf.org/html.charters/secsh-charter.html.

97

SSH-2 Architecture

SSH-2 adopts a three layer architecture:
• SSH Transport Layer Protocol.

– Initial connection.
– Server authentication (almost always).
– Sets up secure channel between client and server.

• SSH User Authentication Protocol
– Client authentication over secure transport layer channel.

• SSH Connection Protocol
– Supports multiple concurrent connections over a single

transport layer protocol secure channel.
– Efficiency (session re-use) and support for multiple

applications.
• Some texts consider UserAuth and Connection

protocols to be peers. The IETF draft standards do not.

98

SSH-2 Architecture

SSH Transport Layer Protocol

SSH User Authentication Protocol

TCP

SSH Connection Protocol

Applications

99

• Server (almost) always authenticated in transport
layer protocol.
– Usually by a public key signature method.
– Public keys supported by certificates and x.509 PKI /

SPKI/ OpenPGP or manually distributed to clients.
• Client host/user usually authenticated in user

authentication protocol.
– By public key method (many methods supported).
– Or simple password for particular application over

secure channel.
– Or via host-based method.

SSH-2 Security Goals

100

• Establishment of a fresh, shared secret.
– Using Diffie-Hellman key exchange.
– Shared secret used to derive further keys, similar to

SSL/IPSec.
– For confidentiality and authentication in SSH transport

layer protocol.
• Secure ciphersuite negotiation.

– Encryption, MAC, and compression algorithms.
– Server authentication and key exchange methods.

SSH-2 Security Goals

101

• SSH-2 requires support for particular algorithms,
but also defines a DNS-style naming convention
for “private” algorithms and methods.

• Typical algorithms:
– Server authentication via RSA or DSS signatures on

nonces (and other fields).
– HMAC-SHA1 or HMAC-MD5 for MAC algorithm.
– 3DES, AES, RC4 and many others.
– SHA-1 hash function for key derivation.

SSH-2 Algorithms

102

SSH-1 Versus SSH-2

• Many vulnerabilities were found in SSH-1.
– SSH-1 Insertion attack exploiting weak integrity mechanism

(CRC-32) and unprotected packet length field.
– SSHv1.5 session key retrieval attack (theoretical).
– Man-in-the-middle attacks (using e.g. dsniff).
– DoS attacks.

• Overload server with connection requests.
• Buffer overflows.

• SSH-1 now regarded as obsolete, but may still be
widely deployed.
– SSH-2 implementations tend to have an SSH-1 mode.

• Few SSH-2 protocol problems discovered, but plenty of
vulnerabilities in implementations.

103

SSH Port Forwarding

Without SSH or port forwarding.

UM User’s
machine

LS Login
server

MO Mail out
server

MI Mail in
server

Src: UM Dest: LS Port: 23
Src: UM Dest: MI Port: 113
Src: UM Dest: MO Port: 25

104

SSH Port Forwarding

• Recall: TCP port number ‘identifies’ application.
• User on local machine:

– Configures application to connect to selected
destination port on local machine instead of normal
port on remote machine.

– Configures local SSH client to collect traffic on that
port and forward it over secure SSH tunnel to
remote SSH server.

• Remote SSH server:
– Receives SSH-protected traffic and decrypts it.
– Forwards traffic to appropriate server (based on

port) using internal network.

105

SSH Port Forwarding

UM User’s
machine

LS
SSH-enabled

login
server

MO Mail out
server

MI Mail in
server

SSH: Src: UM Dest: LS Port: 22

With SSH and port forwarding.

Mail app: Src: UM Dest: UM Port: 5113
SSH client: Src: UM Dest: LS Port: 113
LS: Src: LS Dest: MI Port: 113
Mail app: Src: UM Dest: UM Port: 5025
SSH client: Src: UM Dest: LS Port: 25
LS: Src: LS Dest: MO Port: 25 106

• Secure remote administration.
– SysAdmin (client) sets up terminal on remote machine.
– SysAdmin password protected by SSH transport layer protocol.
– SysAdmin commands protected by SSH connection protocol.

• sftp:
– Similar functionality to ftp but running over SSH.

• Guerilla Virtual Private Network.
– E.g. use SSH + port forwarding to secure e-mail communications,

web browsing, etc.
• Anonymous ftp for software updates, patches...

– No client authentication needed, but clients want to be sure of
origin and integrity of software.

SSH Applications

107

6.3 Comparing IPSec, SSL/TLS, SSH

• All three have initial (authenticated) key
establishment then key derivation.
– IKE in IPSec
– Handshake Protocol in SSL/TLS (can be

unauthenticated!)
– Authentication Protocol in SSH

• All protect ciphersuite negotiation.
• All three use keys established to build a

‘secure channel’.

108

Comparing IPSec, SSL/TLS, SSH

• Operate at different network layers.
– This brings pros and cons for each protocol suite.
– Recall `Where shall we put security?’ discussion.
– Naturally support different application types, can all

be used to build VPNs.
• All practical, but not simple.

– Complexity leads to vulnerabilities.
– Complexity makes configuration and management

harder.
– Complexity can create computational bottlenecks.
– Complexity necessary to give both flexibility and

security.

109

Comparing IPSec, SSL/TLS, SSH

Security of all three undermined by:
• Implementation weaknesses.
• Weak server platform security.

– Worms, malicious code, rootkits,…
• Weak client platform security.

– Keystroke loggers, malware,…
• Limited deployment of certificates and infrastructure to

support them.
– Especially client certificates.

• Lack of user awareness and education.
– Users click-through certificate warnings.
– Users fail to check URLs.
– Users send sensitive account details to bogus websites

(“phishing”) in response to official-looking e-mail.
110

Secure Protocols – Last Words

A (mis)quote from Eugene Spafford:

“Using encryption on the Internet is the
equivalent of arranging an armored car to
deliver credit-card information from someone
living in a cardboard box to someone living on
a park bench.”

